Population Distribution In World Cities

1. Introduction

Photo by [Miguel Contreras, Guatemala] on wikipedia

2. Data Exploration

{'admin_name': {4568: 'Brussels-Capital Region'},  'capital': {4568: 'primary'},  'city': {4568: 'Brussels'},  'city_ascii': {4568: 'Brussels'},  'country': {4568: 'Belgium'},  'id': {4568: 1056469830},  'iso2': {4568: 'BE'},  'iso3': {4568: 'BEL'},  'lat': {4568: 50.8333},  'lng': {4568: 4.3333},  'population': {4568: 1743000.0}}
<class 'pandas.core.frame.DataFrame'> 
RangeIndex: 12959 entries, 0 to 12958 Data columns (total 11 columns):
city 12959 non-null object
city_ascii 12959 non-null object
lat 12959 non-null float64
lng 12959 non-null float64
country 12959 non-null object
iso2 12928 non-null object
iso3 12959 non-null object
admin_name 12750 non-null object
capital 5180 non-null object
population 11292 non-null float64
id 12959 non-null int64
dtypes: float64(3), int64(1), object(7) memory usage: 1.1+ MB

3. Population distribution

3.1 Should population evenly distributed in world cities?

3.2 Do people in all the countries follow the same pattern: population is unbalanced among cities?

3.3 Which elements determines the city’s population?

Index(['city', 'city_ascii', 'lat', 'lng', 'country', 'iso2', 'iso3',        'admin_name', 'capital', 'population', 'id'],       dtype='object')

4. Conclusion



Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store