Part 1: Multiple Plots
Using make_subplots
takes the following steps:
(1) generate a figure via make_subplots
function
(2) add trace via add_trace
function
(3) update_layout
is used to reset the image setting
Notes on make_subplots
specs
is an important parameter inmake_subplots
, and it will determine the type of plots we want to have, for example, if we want to havepie
plot, then we should writespecs=[[{'type':'pie'}]]
subplot_titles
is used to denote the title of each subplots- we can also disable shared xaxes title function by calling
shared_xaxes=False
; then usefig.update_xaxes
to set individual xaxes titles.
Part 2: Basic Plot Element
Part 2.1: Pie
go.Pie
pull
is used to emphasize some parts of the pie plot see this example- how to make sure that several pies in different HTMLs share the same color scheme
color_dict = {'A': px.colors.qualitative.G10[1],
'B': px.colors.qualitative.G10[5],
'C': px.colors.qualitative.G10[2],
'D': px.colors.qualitative.G10[0],
'E': px.colors.qualitative.G10[7]}
color_list = np.array([''] * len(tmp_dict['type']), dtype = object)
for index, type in enumerate(tmp_dict['type']):
color_list[index] = color_dict[type]fig.add_trace(go.Pie(labels=tmp_dict['AB'],
values=tmp_dict['CD'],
pull=[DetectionEnum.indicator(ele) for ele in tmp_dict['type']],
marker={'colors':color_list}
)
see color sequence in plotly express to check the default color maps provided by plotly
Part 3: Plotly Express
Part 3.1 Change the label
Axis titles (and legend titles) can also be overridden using the labels
argument of Plotly Express functions:
import plotly.express as px
df = px.data.tips()
fig = px.scatter(df, x="total_bill", y="tip", color="sex",
labels=dict(total_bill="Total Bill ($)", tip="Tip ($)", sex="Payer Gender")
)
fig.show()
see https://plotly.com/python/axes/